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Abstract

The analytical solution for the problem of transient heat conduction in multi-dimensional composite cylinder slab is developed for a
time-dependent boundary condition. For such problems, numerical programs are needed to obtain eigenvalues and residues in most of
the published papers. The numerical schemes may become unstable due to the existence of imaginary eigenvalues in multi-dimensional
cases. In this paper, the proposed analytical method involves no numerical complications. By a novel application of the methods of the
Laplace transform and separation of variables together with variable transformations, the residue calculation is avoided. The developed
analytical method is powerful which represents extension of the analytical approach derived for the heat conduction problem in Carte-
sian coordinates. A closed form solution is provided. Calculation examples show that the analytical solutions predict good agreement
with the numerical results.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of composite cylinders has been tremendous in
many engineering fields such as aerospace, automobile,
chemical and energy, civil and infrastructure, sports and
recreation, and even biomedical engineering. As a result,
a detailed knowledge of temperature distributions and heat
fluxes in composite cylinders is needed in heat conduction
problems. Numerical methods are a common method for
such problems, however, analytical approaches can provide
greater insight into the physical processes and can be used
to validate numerical models. Unfortunately, analytical
solutions exist only for relatively simple cases wherein:
(1) the slab is homogeneous and (2) the boundary condi-
tions are not complicated. To deal with practical problems
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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of composite cylinders with general boundary conditions,
most of the analytical methods are limited by high compu-
tational cost involving numerical iterations for eignevalues
and residues. Such eigenvalue and residue computations
are often not fully automatic and, consequently, are inher-
ently time-consuming [1].

For multi-dimensional heat conduction problems in a
composite cylinder slab, the commonly applied techniques
are Green functions, orthogonal expansions and the
Laplace transform [2]. The first two techniques inherit
associated eigenvalue problems. In a single layer slab in
one-dimensional case, an eigenfunction often links the
space and time variables when applying separation of vari-
ables. However, in a multi-layer slab in one-dimensional
case, eigenfunctions may be also yielded from the bound-
ary conditions presented in the contacted layers. Hence,
eigenvalue problems may exist even for steady-state heat
conduction problems in one-dimensional geometry. The
statement is true for a multi-dimensional slab also (see [3]
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Nomenclature

b resultant coefficient defined in Eq. (3.15)
h intermediate variable defined in Eq. (3.22a)
j layer identifier
k diffusivity
L, l thickness
M resultant function defined in Eq. (3.24a)
m index number
N resultant function defined in Eq. (3.24b)
n layer number
q intermediate variable defined in Eq. (3.22a)
R variable-separated temperature U = XR

r space coordinate
t time

T temperature
U homogenised temperature = T � T1
V constructed new variable defined in Eq. (3.19)
X variable-separated temperature U = XR

x space coordinate

Greek symbols

a convective and radiative heat transfer coefficient
u phase
k thermal conductivity
x period
n intermediate variable defined in Eq. (3.22a)
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as an example). Concerning the third technique of the
Laplace transform, residue computations are often needed.
A detailed literature review of these methods can be found
in [4]. As an example, an analytical solution for the prob-
lem of transient heat conduction in two-layer cylinder slab
was proposed in [5]. Several groups of eigenvalues were
needed to compute. The dependence of the eigenfunctions
of the eigenvalues was �very awkwardly�, the quotation
mark presenting the quoted text in [5]. Moreover, the
numerical searching program may become unstable due
to the existence of the imaginary eigenvalues [6].

Recently, Lu et al. developed an analytical method for
the multi-dimensional transient heat problem in a compos-
ite slab subject to a time-dependent boundary condition [7].
An approximated solution is obtained. The main contribu-
tion of the work is a novel application of the methods of
the Laplace transform and separation of variables together
with variable transformations, a numerical work concern-
ing eigenvalue and residue search is avoided [7].

The objective of this work is to extend the result in
Cartesian coordinates [7] to cylindrical coordinates. The
configuration of the problem dealt in this paper is similar
as that considered in [5]. Only one group of eigenvalues
is needed to find. The eigenvalues represent the roots of a
simple Bessel function, which can be easily obtained from
many standard textbooks. Hence, no numerical work is
necessitated. Even in an extreme case when numerical
searching of these eigenvalues is needed, an instability risk
in numerical search due to imaginary eigenvalues does not
exist. Such instability risk problem is very common in solv-
ing multi-dimensional multi-layer heat conduction prob-
lems [6].
2. Mathematical model

2.1. Problem specification and model equations

Let an n-layer composite cylinder be in cylindrical coor-
dinates in x- and r-directions as illustrated in Fig. 1. The
layers are in x-direction and characterised by constant con-
ductivity, diffusivity and thickness which are denoted as kj,
kj and lj, j = 1, . . . ,n. The cylinders have a common radius
r0. An ideal contact between layers is assumed.

Denote L0 = l0 = 0 and Lj = l0 + � � � + lj, j = 1, . . . ,n.
So the lengths of contact layers in x-direction are L0,
L1, . . . ,Ln. The general heat conduction equation in terms
of temperature Tj(t, r,x) in cylindrical coordinates is

kj
o
2T j

or2
þ 1

r
oT j

or

� �
þ kj

o
2T j

ox2
¼ oT j

ot
;

0 < r < r0; x 2 ½Lj�1; Lj�; j ¼ 1; . . . ; n; ð2:1aÞ

with boundary conditions

k1
oT 1

ox
ðt; r; L0Þ ¼ �aþðT 1ðt; r; L0Þ � T1ðtÞÞ;

0 < r < r0; ð2:1bÞ
T jðt; r; LjÞ ¼ T jþ1ðt; r; LjÞ;
0 < r < r0; j ¼ 1; . . . ; n� 1; ð2:1cÞ

� kj
oT j

ox
ðt; r; LjÞ ¼ �kjþ1

oT jþ1

ox
ðt; r; LjÞ;

0 < r < r0; j ¼ 1; . . . ; n� 1; ð2:1dÞ

� kn
oT n

ox
ðt; r; LnÞ ¼ �a�ðT1ðtÞ � T nðt; r; LnÞÞ;

0 < r < r0; ð2:1eÞ

� kj
oT j

or
ðt; r0; xÞ ¼ �arjðT jðt; r0; xÞ � T1ðtÞÞ;

x 2 ½Lj�1; Lj�; j ¼ 1; . . . ; n; ð2:1fÞ

and the initial value

T jð0; r; xÞ ¼ 0; 0 < r < r0; x 2 ½Lj�1; Lj�; j ¼ 1; . . . ; n.

ð2:1gÞ

Without losing generality, it is assumed that the initial
temperature is zero. The surface heat transfer coefficients
are denoted as a+, a� and arj, j = 1, . . . ,n. The boundary
temperature is presented as time-dependent T1(t).
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Fig. 1. Schematic of the composite cylinder slab.
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2.2. Further statement of the boundary conditions

For calculational convenience, the boundary tempera-
ture is assumed as a simple periodic function T1(t) =
cos(xt + u). Furthermore, a solution will be given accord-
ing to the complex form of the boundary temperature,
namely

T1ðtÞ ¼ eixtþiu. ð2:2Þ
Hence the solution of Eq. (2.1) will be the real part of

the sought-after solution. If there is no danger of confu-
sion, we shall keep the same notations. For more general
boundary temperatures, solutions will be derived later.

In general study contexts, it has been agreed that the
boundary condition of the third kind can produce mathe-
matical incompatibilities in the direction parallel to the lay-
ers [7]. Hence, only the first and the second kind boundary
conditions in x-direction are considered here, which
assumes that arj are either zero or 1 (first and second
kinds). As a result, two types of boundary conditions in
x-direction are considered:

r-boundary-1 : arj ¼ 1; j ¼ 1; . . . ; n; ð2:3aÞ
r-boundary-2 : arj ¼ 0; j ¼ 1; . . . ; n. ð2:3bÞ

The solution for r-boundary-2 problem can be approxi-
mated as one-dimensional problem in Cartesian coordi-
nates which has been studied earlier [4]. Therefore, we
shall focus on developing the solution method for r-bound-
ary-1 case.

3. Solution method

3.1. Homogenising the equations

For arj = 1, Eq. (2.1f) reads

T jðt; r0; xÞ ¼ T1ðtÞ; x 2 ½Lj�1; Lj�; j ¼ 1; . . . ; n. ð3:1aÞ
For any jth layer, we introduce the following new vari-

able in order to homogenise the boundary condition:

Uj ¼ T j � T1ðtÞ. ð3:1bÞ
Eq. (2.1) is then re-written as

kj
o2Uj

or2
þ 1

r
oUj

or

� �
þ kj

o2Uj

ox2
¼ oUj

ot
þ T 0

1ðtÞ;

0 < r < r0; x 2 ½Lj�1; Lj�; j ¼ 1; . . . ; n; ð3:2aÞ

with boundary and initial conditions

� k1
oU 1

ox
ðt; r; L0Þ ¼ �aþU 1ðt; r; L0Þ; 0 < r < r0; ð3:2bÞ

Ujðt; r; LjÞ ¼ Ujþ1ðt; r; LjÞ;

0 < r < r0; j ¼ 1; . . . ; n� 1; ð3:2cÞ

� kj
oUj

ox
ðt; r; LjÞ ¼ �kjþ1

oUjþ1

ox
ðt; r; LjÞ;

0 < r < r0; j ¼ 1; . . . ; n� 1; ð3:2dÞ

� kn
oUn

ox
ðt; r; LnÞ ¼ a�Unðt; r; LnÞ; 0 < r < r0; ð3:2eÞ

Ujð0; r0; xÞ ¼ 0; x 2 ½Lj�1; Lj�; j ¼ 1; . . . ; n. ð3:2fÞ

Ujð0; r; xÞ ¼ �T1ð0Þ;

0 < r < r0; x 2 ½Lj�1; Lj�; j ¼ 1; . . . ; n. ð3:2gÞ
3.2. Separating the variables

As Eq. (3.2a) is nonhomogeneous, we shall adopt a
novel technique of separation of variables by assuming
that

Ujðt; r; xÞ ¼ X jðt; xÞRjðrÞ; ð3:3Þ
where Rj(r) is a variable-separated function which satisfies
the homogeneous form of Eq. (3.2a). By substituting Rj(r)
into the homogeneous form of Eq. (3.2a) we get

function of t and x ¼
kj

d2Rj

dr2 þ 1
r
dRj

dr

� �
Rj

. ð3:4Þ

Setting each side of the above equation as �kjl2
j gives

kj
d2Rj

dr2
þ 1

r
dRj

dr

� �
þ kjl2

j Rj ¼ 0; ð3:5Þ

whose general solution is

Rjm ¼ AjmJ 0ðljmrÞ; m ¼ 1; . . . ;1; ð3:6Þ

where J0 is the Bessel function of the first kind of order zero
and Ajm are determined by the boundary conditions. To
satisfy Eq. (3.2f) Rjm(r0) = 0, we get the following
eigenfunction:

J 0ðljmr0Þ ¼ 0. ð3:7Þ

The roots of J0 have been studied extensively in many
engineering problems. The eigenvalues are tabulated in
many standard books. We can list the first five values:

ljmr0 ¼ 2:4048; 5:5201; 8:6537; 11:7915; 14:9303. ð3:8Þ



1110 X. Lu et al. / International Journal of Heat and Mass Transfer 49 (2006) 1107–1114
The coefficient ljm is independent of layer j and can be writ-
ten as

lm ¼ 2:4048

r0
;
5:5201

r0
; . . . ; m ¼ 1; . . . ;1. ð3:9Þ

Hence Rm in Eq. (3.6) can be obtained and the solution Uj

in Eq. (3.3) is presented as

Ujðt; r; xÞ ¼
X1
m¼1

X jmðt; xÞRmðrÞ

¼
X1
m¼1

X jmðt; xÞJ 0ðlmrÞ. ð3:10Þ

Note that the coefficient Ajm in Eq. (3.6) is embedded in
Xjm.

3.3. Some properties of r-variable function Rm

We shall omit writing m = 1, . . . ,1, j = 1, . . . ,n, etc.
Before deriving the equations for Xjm, let us recall some
of the properties of Bessel functions.

• With weighting function r, Rm = J0(lmr) are orthogonal
functions:Z r0

0

rJ 0ðlmrÞJ 0ðlkrÞdr ¼ 0; for m 6¼ k; ð3:11aÞ

Z r0

0

rJ 2
0ðlmrÞdr ¼

1

l2
m

ðlmrÞ
2

2
fJ 2

0ðlmrÞ þ J 2
1ðlmrÞg

" #�����
r¼r0

r¼0

¼ r20
2
J 2
1ðlmr0Þ;

ð3:11bÞ
here Eq. (3.7) is inserted.

• Expressing 1 as the sum of J0(lmr):

1 ¼
X1
k¼1

bkJ 0ðlkrÞ. ð3:12Þ

Multiplying rJ0(lmr) on both sides and integrating them
from 0 to r0 result inZ r0

0

rJ 0ðlmrÞdr ¼
X1
k¼1

Z r0

0

bkrJ 0ðlkrÞJ 0ðlmrÞdr. ð3:13Þ

The left side is easily calculated asZ r0

0

rJ 0ðlmrÞdr ¼
1

l2
m

ðlmrÞJ 1ðlmrÞ½ �jr¼r0
r¼0

¼ r0
lm

J 1ðlmr0Þ; ð3:14aÞ

and the right side from Eqs. (3.11a–b) as

¼ bm
r20
2
J 2
1ðlmr0Þ. ð3:14bÞ

Hence

bm ¼ 2

lmr0J 1ðlmr0Þ
. ð3:15Þ
3.4. Resultant one-dimensional heat equation in t and x

variables

We now start to derive the equations for Xjm. Substitut-
ing Eq. (3.10) into Eq. (3.2a) and representing 1 as the sum
of Rm as Eq. (3.12), Eq. (3.2a) is then re-written as

kj
X1
m¼1

d2Rm

dr2
X jm þ 1

r

X1
m¼1

dRm

dr
X jm

 !
þ kj

X1
m¼1

Rm
o
2X jm

ox2

¼
X1
m¼1

Rm
oX jm

ot
þ T 0

1ðtÞ
X1
m¼1

bmRm ð3:16Þ

where bm is given in Eq. (3.15).
Inserting Eq. (3.5) results in

�
X1
m¼1

kjl2
mX jmRm þ kj

X1
m¼1

o2X jm

ox2
Rm

¼
X1
m¼1

Rm
oX jm

ot
þ T 0

1ðtÞ
X1
m¼1

bmRm. ð3:17Þ

We finally arrive at

kj
o
2X jm

ox2
� kjl2

mX jm ¼ oX jm

ot
þ bmT 0

1ðtÞ;

x 2 ½Lj�1; Lj�; j ¼ 1; . . . ; n; ð3:18aÞ

with the boundary conditions (3.2b)–(3.2f) and the initial
condition (3.2g) as

� k1
oX 1m

ox
ðt; L0Þ ¼ �aþX 1mðt; L0Þ; ð3:18bÞ

X jmðt; LjÞ ¼ X ðjþ1Þmðt; LjÞ; j ¼ 1; . . . ; n� 1; ð3:18cÞ

� kj
oX jm

ox
ðt; LjÞ ¼ �kjþ1

oX ðjþ1Þm

ox
ðt; LjÞ; j ¼ 1; . . . ; n� 1;

ð3:18dÞ

� kn
oXnm

ox
ðt; LnÞ ¼ a�Xnmðt; LnÞ; ð3:18eÞ

X jmð0; xÞ ¼ �bmT1ð0Þ; x 2 ½Lj�1; Lj�; j ¼ 1; . . . ; n;

ð3:18fÞ

where T1(t) = eixt+iu.
The dimension of the equation system is reduced. Let

us further simplify the equation by introducing a new
variable

V jm ¼ X jm þ ixbm
kjl2

jm þ ix
T1ðtÞ þ

kjl2
jmbm

kjl2
jm þ ix

e�kjl2jmtþiu.

ð3:19Þ

Then Eq. (3.18) reads

kj
o2V jm

ox2
� kjl2

mV jm ¼ oV jm

ot
; x 2 ½Lj�1; Lj�; j ¼ 1; . . . ; n;

ð3:20aÞ
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with boundary and initial conditions

� k1
oV 1m

ox
ðt; L0Þ ¼ �aþðV 1mðt; L0Þ � V þðtÞÞ; ð3:20bÞ

V jmðt; LjÞ ¼ V ðjþ1Þmðt; LjÞ; j ¼ 1; . . . ; n� 1; ð3:20cÞ

� kj
oV jm

ox
ðt; LjÞ ¼ �kjþ1

oV ðjþ1Þm

ox
ðt; LjÞ; j ¼ 1; . . . ; n� 1;

ð3:20dÞ

� kn
oV nm

ox
ðt; LnÞ ¼ a�ðV nmðt; LnÞ � V �ðtÞÞ; ð3:20eÞ

V jmð0; xÞ ¼ 0; x 2 ½Lj�1; Lj�; j ¼ 1; . . . ; n; ð3:20fÞ

where

V þðtÞ ¼
ixbm

k1l2
1m þ ix

T1ðtÞ þ
k1l2

1mbm
k1l2

1m þ ix
e�k1l21mtþiu; ð3:20gÞ

V �ðtÞ ¼
ixbm

knl2
nm þ ix

T1ðtÞ þ
knl2

nmbm
knl2

nm þ ix
e�knl2nmtþiu. ð3:20hÞ
3.5. Closed form solution

Eq. (3.20) has been studied by Lu et al. [4]. The temporal
Laplace transform has been used to the equation. Its defi-
nition is given as

V jmðs; xÞ ¼
Z 1

0

expð�stÞV jmðt; xÞdt. ð3:21Þ

Without showing the details, we give the closed form solu-
tion of Vjm as following:

For jth layer, denote

qjm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
kj

þ l2
m

r
; njm ¼ qjmlj;

hj ¼
kjþ1

kj

ffiffiffiffiffiffiffiffi
kj
kjþ1

s
ðj ¼ 1; . . . ; n� 1Þ;

ð3:22aÞ

hAm ¼ knqnm cosh nnm þ a� sinh nnm;

hBm ¼ knqnm sinh nnm þ a� cosh nnm;
ð3:22bÞ

where lm is given in Eq. (3.9)
DðsÞ ¼

k1q1m �aþ 0 0 0 0 �
sinh n1m cosh n1m 0 �1 0 0 �
cosh n1m sinh n1m �h1 0 0 0 �

0 0 sinh n2m cosh n2m 0 �1 �
0 0 cosh n2m sinh n2m �h2 0 �
� � � � � � � � � � � � � � � � � � �
0 0 0 0 0 0 �
0 0 0 0 0 0 �
0 0 0 0 0 0 �

����������������������
D1ðsÞ ¼

DðsÞ with

row� 1 column� 2j� 1

deleted

��������

��������
DðsÞ ;

D2ðsÞ ¼

DðsÞ with

row� 2n column� 2j� 1

deleted

��������

��������
DðsÞ ;

ð3:23bÞ

D3ðsÞ ¼

DðsÞ with

row� 1 column� 2j

deleted

��������

��������
DðsÞ ;

D4ðsÞ ¼

DðsÞ with

row� 2n column� 2j

deleted

��������

��������
DðsÞ ;

ð3:23cÞ

Mjmðs; xÞ ¼ �aþD1 sinhðqjmðx� Lj�1ÞÞ

þ aþD3 coshðqjmðx� Lj�1ÞÞ; ð3:24aÞ

Njmðs; xÞ ¼ �a�D2 sinhðqjmðx� Lj�1ÞÞ

þ a�D4 coshðqjmðx� Lj�1ÞÞ. ð3:24bÞ

V jmðs; xÞ ¼ Mjmðs; xÞV þðsÞ þ Njmðs; xÞV �ðsÞ ð3:25Þ

The inverse of V jmðs; xÞ is approximated as

V jmðt; xÞ ¼
ixbm

k1l2
1m þ ix

Mjmðix; xÞeixtþiu

þ k1l2
1mbm

k1l2
1m þ ix

Mjmð�l2
1m; xÞe�l2

1mtþiu

þ ixbm
knl2

nm þ ix
Njmðix; xÞeixtþiu

þ knl2
nmbm

knl2
nm þ ix

Njmð�l2
nm; xÞe�l2nmtþiu. ð3:26Þ
� � 0 0 0 0

� � 0 0 0 0

� � 0 0 0 0

� � 0 0 0 0

� � 0 0 0 0

� � � � � � � � � � � � � �
� � sinh nðn�1Þm cosh nðn�1Þm 0 �1

� � cosh nðn�1Þm sinh nðn�1Þm �hn�1 0

� � 0 0 hAm hBm

����������������������

; ð3:23aÞ
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Fig. 2. Schematic picture of the five-layer composite cylinder.

Table 1
Material properties and dimensions of the composite cylinder

Material Thermal
conductivity
(W/m/K)

Thermal
diffusivity
(m2/s)

Thickness
(mm)

Layer 1 0.23 4.11 · 10�7 50
Layer 2 0.0337 1.47 · 10�6 100
Layer 3 0.9 3.75 · 10�7 100
Layer 4 0.147 1.61 · 10�7 200
Layer 5 0.12 1.5 · 10�7 20

Table 2
Parameters in Eq. (4.1)

x1 x2 x3 x4

30.0 5.0 2.0 1.0

u1 u2 u3 u4

5.607506 13.59596 1.451539 5.418717

a0 a1 a2 a3 a4
5.0 2.72217 �5.019664 1.084058 0.4648

1112 X. Lu et al. / International Journal of Heat and Mass Transfer 49 (2006) 1107–1114
Combining Eqs. (3.1b), (3.10) and (3.19) gives

T j ¼ real
X1
m¼1

V jm�
ixbm

kjl2
jmþ ix

T1ðtÞ�
kjl2

jmbm
kjl2

jmþ ix
e�kjl2jmtþiu

 ! 

�J 0ðlmrÞþT1ðtÞ
!
; ð3:27Þ

where lm is given in Eq. (3.9), Vjm in Eq. (3.26) and �real�
presents the real part.

3.6. More general boundary conditions

For more general time-dependent boundary tempera-
ture, we represent it as Fourier approximation as
T1ðtÞ ¼ a0 þ

P1
k¼1ak cosðxkt þ ukÞ. Due to the linear prop-

erty of the equation system, the solution is the sum of those
with constant boundary temperature a0 and with the
boundary temperature

P1
k¼1ak cosðxkt þ ukÞ. The second

part of the solution is easily obtained according to the
above-discussed theory.

For the first part of the solution with constant boundary
T1 = a0, Eq. (3.25) reads (see Eqs. (3.20g) and (3.20h))

V jmðs; xÞ ¼ Mjmðs; xÞV þðsÞ þ Njmðs; xÞV �ðsÞ

¼ ixbm
k1l2

1m þ ix
Mjm þ ixbm

knl2
nm þ ix

Njm

� �
a0
s
þ � � � .

ð3:28Þ

The omitted term presents the periodic boundary tempera-
ture, the inverse of which can be obtained according to the
previous-discussed theory.

As the matrix determinant Mjm or Njm is the function of
hyperbolic functions sinh and cosh which can be approxi-
mated by power series, linearisation of Eqs. (3.24) and
(3.28) gives

V jm � const

const1 � sþ const2
þ � � � . ð3:29Þ

The inverse Laplace transform of the first term is then writ-
ten as const

const1
exp � const2

const1
t

� �
. Hence, the final solution can be

explicitly obtained.
Another simpler way of finding the first part of the solu-

tion with a constant boundary temperature is ignoring the
transient term which will die away if studies do not focus
very much on the initial temperature change. Then the final
value is a0.

4. Calculation example

A five-layer composite cylinder was selected as the calcu-
lation example. Its schematic picture is demonstrated in
Fig. 2. The common radius of the cylinders is 1 m. The
thermal properties and dimensions of the composition are
presented in Table 1. The surface heat transfer coefficients
were assumed to be a� = 25 W/m2/K and a+ = 6 W/m2/K.

In this example, the boundary temperature was taken
from the measurement and then fitted with periodic func-
tions with periods 30, 5, 2 and 1 days as following:
T1ðtÞ ¼ a0 þ
X4
1

ai cos
2pt
xi

� ui

� �
ð4:1Þ

where fitting parameters are listed in Table 2 and Fig. 3
shows the values.

Calculations were made at the central points in all cylin-
ders which are marked as layers 1 to 5. Only first nine
eigenvalues in Eq. (3.9), taken from some standard text-
books, were used.

The comparison results of transient temperatures in lay-
ers 2 and 3 are displayed in Fig. 4. The temperatures were
calculated according to seconds in time scale and the
results were stored in files as hourly values and shown in
figures as hourly and daily values. Results for the first three
days are exhibited in Fig. 5. The analytical results agree
with the numerical predictions. As the numerical and ana-
lytical discrepancies in other layers have not shown any
substantial change, we only demonstrate the results in lay-
ers 2 and 3 here.
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5. Conclusions

The main conclusion we can draw is the powerful ana-
lytical method developed in this paper for the problem of
transient heat conduction in multi-dimensional composite
cylinder slab with a time-dependent boundary condition.
The closed form solution is obtained. Its application range
is wide. For such problems, several groups of eigenvalues
with imaginary values are needed to compute in most of
the published papers. Numerical schemes are then necessi-
tated which may be unstable due to the existence of imag-
inary eigenvalues. In this paper, however, a rough
approximation is sufficient in most cases in the eigenvalue
search. Hence, no numerical approach is required. More-
over, in some extreme cases where we have to carry out
numerical programs for the eigenvalues, a possible instabil-
ity of numerical computation due to the imaginary eigen-
value will not exist.

Above all, the computing load is small as calculations
involve only simple computations of matrix determinants.
Furthermore, it is only for the demonstration sake that
we assume a constant conductivity axially and radially in
each layer and a perfect contact between layers. These
restrictions can be easily cancelled without adding more
texts in the article.
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